Binary Options JTFX

Forex Signals Reddit: top providers review (part 1)

Forex Signals Reddit: top providers review (part 1)

Forex Signals - TOP Best Services. Checked!

To invest in the financial markets, we must acquire good tools that help us carry out our operations in the best possible way. In this sense, we always talk about the importance of brokers, however, signal systems must also be taken into account.
The platforms that offer signals to invest in forex provide us with alerts that will help us in a significant way to be able to carry out successful operations.
For this reason, we are going to tell you about the importance of these alerts in relation to the trading we carry out, because, without a doubt, this type of system will provide us with very good information to invest at the right time and in the best assets in the different markets. financial
Within this context, we will focus on Forex signals, since it is the most important market in the world, since in it, multiple transactions are carried out on a daily basis, hence the importance of having an alert system that offers us all the necessary data to invest in currencies.
Also, as we all already know, cryptocurrencies have become a very popular alternative to investing in traditional currencies. Therefore, some trading services/tools have emerged that help us to carry out successful operations in this particular market.
In the following points, we will detail everything you need to know to start operating in the financial markets using trading signals: what are signals, how do they work, because they are a very powerful help, etc. Let's go there!

What are Forex Trading Signals?

https://preview.redd.it/vjdnt1qrpny51.jpg?width=640&format=pjpg&auto=webp&s=bc541fc996701e5b4dd940abed610b59456a5625
Before explaining the importance of Forex signals, let's start by making a small note so that we know what exactly these alerts are.
Thus, we will know that the signals on the currency market are received by traders to know all the information that concerns Forex, both for assets and for the market itself.
These alerts allow us to know the movements that occur in the Forex market and the changes that occur in the different currency pairs. But the great advantage that this type of system gives us is that they provide us with the necessary information, to know when is the right time to carry out our investments.
In other words, through these signals, we will know the opportunities that are presented in the market and we will be able to carry out operations that can become quite profitable.
Profitability is precisely another of the fundamental aspects that must be taken into account when we talk about Forex signals since the vast majority of these alerts offer fairly reliable data on assets. Similarly, these signals can also provide us with recommendations or advice to make our operations more successful.

»Purpose: predict movements to carry out Profitable Operations

In short, Forex signal systems aim to predict the behavior that the different assets that are in the market will present and this is achieved thanks to new technologies, the creation of specialized software, and of course, the work of financial experts.
In addition, it must also be borne in mind that the reliability of these alerts largely lies in the fact that they are prepared by financial professionals. So they turn out to be a perfect tool so that our investments can bring us a greater number of benefits.

The best signal services today

We are going to tell you about the 3 main alert system services that we currently have on the market. There are many more, but I can assure these are not scams and are reliable. Of course, not 100% of trades will be a winner, so please make sure you apply proper money management and risk management system.

1. 1000pipbuilder (top choice)

Fast track your success and follow the high-performance Forex signals from 1000pip Builder. These Forex signals are rated 5 stars on Investing.com, so you can follow every signal with confidence. All signals are sent by a professional trader with over 10 years investment experience. This is a unique opportunity to see with your own eyes how a professional Forex trader trades the markets.
The 1000pip Builder Membership is ordinarily a signal service for Forex trading. You will get all the facts you need to successfully comply with the trading signals, set your stop loss and take earnings as well as additional techniques and techniques!
You will get easy to use trading indicators for Forex Trades, including your entry, stop loss and take profit. Overall, the earnings target per months is 350 Pips, depending on your funding this can be a high profit per month! (In fact, there is by no means a guarantee, but the past months had been all between 600 – 1000 Pips).
>>>Know more about 1000pipbuilder
Your 1000pip builder membership gives you all in hand you want to start trading Forex with success. Read the directions and wait for the first signals. You can trade them inside your demo account first, so you can take a look at the performance before you make investments real money!
Features:
  • Free Trial
  • Forex signals sent by email and SMS
  • Entry price, take profit and stop loss provided
  • Suitable for all time zones (signals sent over 24 hours)
  • MyFXBook verified performance
  • 10 years of investment experience
  • Target 300-400 pips per month
Pricing:
https://preview.redd.it/zjc10xx6ony51.png?width=668&format=png&auto=webp&s=9b0eac95f8b584dc0cdb62503e851d7036c0232b
VISIT 1000ipbuilder here

2. DDMarkets

Digital Derivatives Markets (DDMarkets) have been providing trade alert offerings since May 2014 - fully documenting their change ideas in an open and transparent manner.
September 2020 performance report for DD Markets.
Their manner is simple: carry out extensive research, share their evaluation and then deliver a trading sign when triggered. Once issued, daily updates on the trade are despatched to members via email.
It's essential to note that DDMarkets do not tolerate floating in an open drawdown in an effort to earnings at any cost - a common method used by less professional providers to 'fudge' performance statistics.
Verified Statistics: Not independently verified.
Price: plans from $74.40 per month.
Year Founded: 2014
Suitable for Beginners: Yes, (includes handy to follow trade analysis)
VISIT
-------

3. JKonFX

If you are looking or a forex signal service with a reliable (and profitable) music record you can't go previous Joel Kruger and the team at JKonFX.
Trading performance file for JKonFX.
Joel has delivered a reputable +59.18% journal performance for 2016, imparting real-time technical and fundamental insights, in an extremely obvious manner, to their 30,000+ subscriber base. Considered a low-frequency trader, alerts are only a small phase of the overall JKonFX subscription. If you're searching for hundreds of signals, you may want to consider other options.
Verified Statistics: Not independently verified.
Price: plans from $30 per month.
Year Founded: 2014
Suitable for Beginners: Yes, (includes convenient to follow videos updates).
VISIT

The importance of signals to invest in Forex

Once we have known what Forex signals are, we must comment on the importance of these alerts in relation to our operations.
As we have already told you in the previous paragraph, having a system of signals to be able to invest is quite advantageous, since, through these alerts, we will obtain quality information so that our operations end up being a true success.

»Use of signals for beginners and experts

In this sense, we have to say that one of the main advantages of Forex signals is that they can be used by both beginners and trading professionals.
As many as others can benefit from using a trading signal system because the more information and resources we have in our hands. The greater probability of success we will have. Let's see how beginners and experts can take advantage of alerts:
  • Beginners: for inexperienced these alerts become even more important since they will thus have an additional tool that will guide them to carry out all operations in the Forex market.
  • Professionals: In the same way, professionals are also recommended to make use of these alerts, so they have adequate information to continue bringing their investments to fruition.
Now that we know that both beginners and experts can use forex signals to invest, let's see what other advantages they have.

»Trading automation

When we dedicate ourselves to working in the financial world, none of us can spend 24 hours in front of the computer waiting to perform the perfect operation, it is impossible.
That is why Forex signals are important, because, in order to carry out our investments, all we will have to do is wait for those signals to arrive, be attentive to all the alerts we receive, and thus, operate at the right time according to the opportunities that have arisen.
It is fantastic to have a tool like this one that makes our work easier in this regard.

»Carry out profitable Forex operations

These signals are also important, because the vast majority of them are usually quite profitable, for this reason, we must get an alert system that provides us with accurate information so that our operations can bring us great benefits.
But in addition, these Forex signals have an added value and that is that they are very easy to understand, therefore, we will have a very useful tool at hand that will not be complicated and will end up being a very beneficial weapon for us.

»Decision support analysis

A system of currency market signals is also very important because it will help us to make our subsequent decisions.
We cannot forget that, to carry out any type of operation in this market, previously, we must meditate well and know the exact moment when we will know that our investments are going to bring us profits .
Therefore, all the information provided by these alerts will be a fantastic basis for future operations that we are going to carry out.

»Trading Signals made by professionals

Finally, we have to recall the idea that these signals are made by the best professionals. Financial experts who know perfectly how to analyze the movements that occur in the market and changes in prices.
Hence the importance of alerts, since they are very reliable and are presented as a necessary tool to operate in Forex and that our operations are as profitable as possible.

What should a signal provider be like?

https://preview.redd.it/j0ne51jypny51.png?width=640&format=png&auto=webp&s=5578ff4c42bd63d5b6950fc6401a5be94b97aa7f
As you have seen, Forex signal systems are really important for our operations to bring us many benefits. For this reason, at present, there are multiple platforms that offer us these financial services so that investing in currencies is very simple and fast.
Before telling you about the main services that we currently have available in the market, it is recommended that you know what are the main characteristics that a good signal provider should have, so that, at the time of your choice, you are clear that you have selected one of the best systems.

»Must send us information on the main currency pairs

In this sense, one of the first things we have to comment on is that a good signal provider, at a minimum, must send us alerts that offer us information about the 6 main currencies, in this case, we refer to the euro, dollar, The pound, the yen, the Swiss franc, and the Canadian dollar.
Of course, the data you provide us will be related to the pairs that make up all these currencies. Although we can also find systems that offer us information about other minorities, but as we have said, at a minimum, we must know these 6.

»Trading tools to operate better

Likewise, signal providers must also provide us with a large number of tools so that we can learn more about the Forex market.
We refer, for example, to technical analysis above all, which will help us to develop our own strategies to be able to operate in this market.
These analyzes are always prepared by professionals and study, mainly, the assets that we have available to invest.

»Different Forex signals reception channels

They must also make available to us different ways through which they will send us the Forex signals, the usual thing is that we can acquire them through the platform's website, or by a text message and even through our email.
In addition, it is recommended that the signal system we choose sends us a large number of alerts throughout the day, in order to have a wide range of possibilities.

»Free account and customer service

Other aspects that we must take into account to choose a good signal provider is whether we have the option of receiving, for a limited time, alerts for free or the profitability of the signals they emit to us.
Similarly, a final aspect that we must emphasize is that a good signal system must also have excellent customer service, which is available to us 24 hours a day and that we can contact them at through an email, a phone number, or a live chat, for greater immediacy.
Well, having said all this, in our last section we are going to tell you which are the best services currently on the market. That is, the most suitable Forex signal platforms to be able to work with them and carry out good operations. In this case, we will talk about ForexPro Signals, 365 Signals and Binary Signals.

Forex Signals Reddit: conclusion

To be able to invest properly in the Forex market, it is convenient that we get a signal system that provides us with all the necessary information about this market. It must be remembered that Forex is a very volatile market and therefore, many movements tend to occur quickly.
Asset prices can change in a matter of seconds, hence the importance of having a system that helps us analyze the market and thus know, what is the right time for us to start operating.
Therefore, although there are currently many signal systems that can offer us good services, the three that we have mentioned above are the ones that are best valued by users, which is why they are the best signal providers that we can choose to carry out. our investments.
Most of these alerts are quite profitable and in addition, these systems usually emit a large number of signals per day with full guarantees. For all this, SignalsForexPro, Signals365, or SignalsBinary are presented as fundamental tools so that we can obtain a greater number of benefits when we carry out our operations in the currency market.
submitted by kayakero to makemoneyforexreddit [link] [comments]

Red Hat OpenShift Container Platform Instruction Manual for Windows Powershell

Introduction to the manual
This manual is made to guide you step by step in setting up an OpenShift cloud environment on your own device. It will tell you what needs to be done, when it needs to be done, what you will be doing and why you will be doing it, all in one convenient manual that is made for Windows users. Although if you'd want to try it on Linux or MacOS we did add the commands necesary to get the CodeReady Containers to run on your operating system. Be warned however there are some system requirements that are necessary to run the CodeReady Containers that we will be using. These requirements are specified within chapter Minimum system requirements.
This manual is written for everyone with an interest in the Red Hat OpenShift Container Platform and has at least a basic understanding of the command line within PowerShell on Windows. Even though it is possible to use most of the manual for Linux or MacOS we will focus on how to do this within Windows.
If you follow this manual you will be able to do the following items by yourself:
● Installing the CodeReady Containers
● Updating OpenShift
● Configuring a CodeReady Container
● Configuring the DNS
● Accessing the OpenShift cluster
● Deploying the Mediawiki application
What is the OpenShift Container platform?
Red Hat OpenShift is a cloud development Platform as a Service (PaaS). It enables developers to develop and deploy their applications on a cloud infrastructure. It is based on the Kubernetes platform and is widely used by developers and IT operations worldwide. The OpenShift Container platform makes use of CodeReady Containers. CodeReady Containers are pre-configured containers that can be used for developing and testing purposes. There are also CodeReady Workspaces, these workspaces are used to provide any member of the development or IT team with a consistent, secure, and zero-configuration development environment.
The OpenShift Container Platform is widely used because it helps the programmers and developers make their application faster because of CodeReady Containers and CodeReady Workspaces and it also allows them to test their application in the same environment. One of the advantages provided by OpenShift is the efficient container orchestration. This allows for faster container provisioning, deploying and management. It does this by streamlining and automating the automation process.
What knowledge is required or recommended to proceed with the installation?
To be able to follow this manual some knowledge is mandatory, because most of the commands are done within the Command Line interface it is necessary to know how it works and how you can browse through files/folders. If you either don’t have this basic knowledge or have trouble with the basic Command Line Interface commands from PowerShell, then a cheat sheet might offer some help. We recommend the following cheat sheet for windows:
Https://www.sans.org/security-resources/sec560/windows\_command\_line\_sheet\_v1.pdf
Another option is to read through the operating system’s documentation or introduction guides. Though the documentation can be overwhelming by the sheer amount of commands.
Microsoft: https://docs.microsoft.com/en-us/windows-serveadministration/windows-commands/windows-commands
MacOS
Https://www.makeuseof.com/tag/mac-terminal-commands-cheat-sheet/
Linux
https://ubuntu.com/tutorials/command-line-for-beginners#2-a-brief-history-lesson https://www.guru99.com/linux-commands-cheat-sheet.html
http://cc.iiti.ac.in/docs/linuxcommands.pdf
Aside from the required knowledge there are also some things that can be helpful to know just to make the use of OpenShift a bit simpler. This consists of some general knowledge on PaaS like Dockers and Kubernetes.
Docker https://www.docker.com/
Kubernetes https://kubernetes.io/

System requirements

Minimum System requirements

The minimum system requirements for the Red Hat OpenShift CodeReady Containers has the following minimum hardware:
Hardware requirements
Code Ready Containers requires the following system resources:
● 4 virtual CPU’s
● 9 GB of free random-access memory
● 35 GB of storage space
● Physical CPU with Hyper-V (intel) or SVM mode (AMD) this has to be enabled in the bios
Software requirements
The minimum system requirements for the Red Hat OpenShift CodeReady Containers has the following minimum operating system requirements:
Microsoft Windows
On Microsoft Windows, the Red Hat OpenShift CodeReady Containers requires the Windows 10 Pro Fall Creators Update (version 1709) or newer. CodeReady Containers does not work on earlier versions or other editions of Microsoft Windows. Microsoft Windows 10 Home Edition is not supported.
macOS
On macOS, the Red Hat OpenShift CodeReady Containers requires macOS 10.12 Sierra or newer.
Linux
On Linux, the Red Hat OpenShift CodeReady Containers is only supported on Red Hat Enterprise Linux/CentOS 7.5 or newer and on the latest two stable Fedora releases.
When using Red Hat Enterprise Linux, the machine running CodeReady Containers must be registered with the Red Hat Customer Portal.
Ubuntu 18.04 LTS or newer and Debian 10 or newer are not officially supported and may require manual set up of the host machine.

Required additional software packages for Linux

The CodeReady Containers on Linux require the libvirt and Network Manager packages to run. Consult the following table to find the command used to install these packages for your Linux distribution:
Table 1.1 Package installation commands by distribution
Linux Distribution Installation command
Fedora Sudo dnf install NetworkManager
Red Hat Enterprise Linux/CentOS Su -c 'yum install NetworkManager'
Debian/Ubuntu Sudo apt install qemu-kvm libvirt-daemonlibvirt-daemon-system network-manage

Installation

Getting started with the installation

To install CodeReady Containers a few steps must be undertaken. Because an OpenShift account is necessary to use the application this will be the first step. An account can be made on “https://www.openshift.com/”, where you need to press login and after that select the option “Create one now”
After making an account the next step is to download the latest release of CodeReady Containers and the pulled secret on “https://cloud.redhat.com/openshift/install/crc/installer-provisioned”. Make sure to download the version corresponding to your platform and/or operating system. After downloading the right version, the contents have to be extracted from the archive to a location in your $PATH. The pulled secret should be saved because it is needed later.
The command line interface has to be opened before we can continue with the installation. For windows we will use PowerShell. All the commands we use during the installation procedure of this guide are going to be done in this command line interface unless stated otherwise. To be able to run the commands within the command line interface, use the command line interface to go to the location in your $PATH where you extracted the CodeReady zip.
If you have installed an outdated version and you wish to update, then you can delete the existing CodeReady Containers virtual machine with the $crc delete command. After deleting the container, you must replace the old crc binary with a newly downloaded binary of the latest release.
C:\Users\[username]\$PATH>crc delete 
When you have done the previous steps please confirm that the correct and up to date crc binary is in use by checking it with the $crc version command, this should provide you with the version that is currently installed.
C:\Users\[username]\$PATH>crc version 
To set up the host operating system for the CodeReady Containers virtual machine you have to run the $crc setup command. After running crc setup, crc start will create a minimal OpenShift 4 cluster in the folder where the executable is located.
C:\Users\[username]>crc setup 

Setting up CodeReady Containers

Now we need to set up the new CodeReady Containers release with the $crc setup command. This command will perform the operations necessary to run the CodeReady Containers and create the ~/.crc directory if it did not previously exist. In the process you have to supply your pulled secret, once this process is completed you have to reboot your system. When the system has restarted you can start the new CodeReady Containers virtual machine with the $crc start command. The $crc start command starts the CodeReady virtual machine and OpenShift cluster.
You cannot change the configuration of an existing CodeReady Containers virtual machine. So if you have a CodeReady Containers virtual machine and you want to make configuration changes you need to delete the virtual machine with the $crc delete command and create a new virtual machine and start that one with the configuration changes. Take note that deleting the virtual machine will also delete the data stored in the CodeReady Containers. So, to prevent data loss we recommend you save the data you wish to keep. Also keep in mind that it is not necessary to change the default configuration to start OpenShift.
C:\Users\[username]\$PATH>crc setup 
Before starting the machine, you need to keep in mind that it is not possible to make any changes to the virtual machine. For this tutorial however it is not necessary to change the configuration, if you don’t want to make any changes please continue by starting the machine with the crc start command.
C:\Users\[username]\$PATH>crc start 
\ it is possible that you will get a Nameserver error later on, if this is the case please start it with* crc start -n 1.1.1.1

Configuration

It is not is not necessary to change the default configuration and continue with this tutorial, this chapter is here for those that wish to do so and know what they are doing. However, for MacOS and Linux it is necessary to change the dns settings.

Configuring the CodeReady Containers

To start the configuration of the CodeReady Containers use the command crc config. This command allows you to configure the crc binary and the CodeReady virtual machine. The command has some requirements before it’s able to configure. This requirement is a subcommand, the available subcommands for this binary and virtual machine are:
get, this command allows you to see the values of a configurable property
set/unset, this command can be used for 2 things. To display the names of, or to set and/or unset values of several options and parameters. These parameters being:
○ Shell options
○ Shell attributes
○ Positional parameters
view, this command starts the configuration in read-only mode.
These commands need to operate on named configurable properties. To list all the available properties, you can run the command $crc config --help.
Throughout this manual we will use the $crc config command a few times to change some properties needed for the configuration.
There is also the possibility to use the crc config command to configure the behavior of the checks that’s done by the $crc start end $crc setup commands. By default, the startup checks will stop with the process if their conditions are not met. To bypass this potential issue, you can set the value of a property that starts with skip-check or warn-check to true to skip the check or warning instead of ending up with an error.
C:\Users\[username]\$PATH>crc config get C:\Users\[username]\$PATH>crc config set C:\Users\[username]\$PATH>crc config unset C:\Users\[username]\$PATH>crc config view C:\Users\[username]\$PATH>crc config --help 

Configuring the Virtual Machine

You can use the CPUs and memory properties to configure the default number of vCPU’s and amount of memory available for the virtual machine.
To increase the number of vCPU’s available to the virtual machine use the $crc config set CPUs . Keep in mind that the default number for the CPU’s is 4 and the number of vCPU’s you wish to assign must be equal or greater than the default value.
To increase the memory available to the virtual machine, use the $crc config set memory . Keep in mind that the default number for the memory is 9216 Mebibytes and the amount of memory you wish to assign must be equal or greater than the default value.
C:\Users\[username]\$PATH>crc config set CPUs  C:\Users\[username]\$PATH>crc config set memory > 

Configuring the DNS

Window / General DNS setup

There are two domain names used by the OpenShift cluster that are managed by the CodeReady Containers, these are:
crc.testing, this is the domain for the core OpenShift services.
apps-crc.testing, this is the domain used for accessing OpenShift applications that are deployed on the cluster.
Configuring the DNS settings in Windows is done by executing the crc setup. This command automatically adjusts the DNS configuration on the system. When executing crc start additional checks to verify the configuration will be executed.

macOS DNS setup

MacOS expects the following DNS configuration for the CodeReady Containers
● The CodeReady Containers creates a file that instructs the macOS to forward all DNS requests for the testing domain to the CodeReady Containers virtual machine. This file is created at /etc/resolvetesting.
● The oc binary requires the following CodeReady Containers entry to function properly, api.crc.testing adds an entry to /etc/hosts pointing at the VM IPaddress.

Linux DNS setup

CodeReady containers expect a slightly different DNS configuration. CodeReady Container expects the NetworkManager to manage networking. On Linux the NetworkManager uses dnsmasq through a configuration file, namely /etc/NetworkManageconf.d/crc-nm-dnsmasq.conf.
To set it up properly the dnsmasq instance has to forward the requests for crc.testing and apps-crc.testing domains to “192.168.130.11”. In the /etc/NetworkManageconf.d/crc-nm-dnsmasq.conf this will look like the following:
● Server=/crc. Testing/192.168.130.11
● Server=/apps-crc. Testing/192.168.130.11

Accessing the Openshift Cluster

Accessing the Openshift web console

To gain access to the OpenShift cluster running in the CodeReady virtual machine you need to make sure that the virtual machine is running before continuing with this chapter. The OpenShift clusters can be accessed through the OpenShift web console or the client binary(oc).
First you need to execute the $crc console command, this command will open your web browser and direct a tab to the web console. After that, you need to select the htpasswd_provider option in the OpenShift web console and log in as a developer user with the output provided by the crc start command.
It is also possible to view the password for kubeadmin and developer users by running the $crc console --credentials command. While you can access the cluster through the kubeadmin and developer users, it should be noted that the kubeadmin user should only be used for administrative tasks such as user management and the developer user for creating projects or OpenShift applications and the deployment of these applications.
C:\Users\[username]\$PATH>crc console C:\Users\[username]\$PATH>crc console --credentials 

Accessing the OpenShift cluster with oc

To gain access to the OpenShift cluster with the use of the oc command you need to complete several steps.
Step 1.
Execute the $crc oc-env command to print the command needed to add the cached oc binary to your PATH:
C:\Users\[username]\$PATH>crc oc-env 
Step 2.
Execute the printed command. The output will look something like the following:
PS C:\Users\OpenShift> crc oc-env $Env:PATH = "CC:\Users\OpenShift\.crc\bin\oc;$Env:PATH" # Run this command to configure your shell: # & crc oc-env | Invoke-Expression 
This means we have to execute* the command that the output gives us, in this case that is:
C:\Users\[username]\$PATH>crc oc-env | Invoke-Expression 
\this has to be executed every time you start; a solution is to move the oc binary to the same path as the crc binary*
To test if this step went correctly execute the following command, if it returns without errors oc is set up properly
C:\Users\[username]\$PATH>.\oc 
Step 3
Now you need to login as a developer user, this can be done using the following command:
$oc login -u developer https://api.crc.testing:6443
Keep in mind that the $crc start will provide you with the password that is needed to login with the developer user.
C:\Users\[username]\$PATH>oc login -u developer https://api.crc.testing:6443 
Step 4
The oc can now be used to interact with your OpenShift cluster. If you for instance want to verify if the OpenShift cluster Operators are available, you can execute the command
$oc get co 
Keep in mind that by default the CodeReady Containers disables the functions provided by the commands $machine-config and $monitoringOperators.
C:\Users\[username]\$PATH>oc get co 

Demonstration

Now that you are able to access the cluster, we will take you on a tour through some of the possibilities within OpenShift Container Platform.
We will start by creating a project. Within this project we will import an image, and with this image we are going to build an application. After building the application we will explain how upscaling and downscaling can be used within the created application.
As the next step we will show the user how to make changes in the network route. We also show how monitoring can be used within the platform, however within the current version of CodeReady Containers this has been disabled.
Lastly, we will show the user how to use user management within the platform.

Creating a project

To be able to create a project within the console you have to login on the cluster. If you have not yet done this, this can be done by running the command crc console in the command line and logging in with the login data from before.
When you are logged in as admin, switch to Developer. If you're logged in as a developer, you don't have to switch. Switching between users can be done with the dropdown menu top left.
Now that you are properly logged in press the dropdown menu shown in the image below, from there click on create a project.
https://preview.redd.it/ytax8qocitv51.png?width=658&format=png&auto=webp&s=72d143733f545cf8731a3cca7cafa58c6507ace2
When you press the correct button, the following image will pop up. Here you can give your project a name and description. We chose to name it CodeReady with a displayname CodeReady Container.
https://preview.redd.it/vtaxadwditv51.png?width=594&format=png&auto=webp&s=e3b004bab39fb3b732d96198ed55fdd99259f210

Importing image

The Containers in OpenShift Container Platform are based on OCI or Docker formatted images. An image is a binary that contains everything needed to run a container as well as the metadata of the requirements needed for the container.
Within the OpenShift Container Platform it’s possible to obtain images in a number of ways. There is an integrated Docker registry that offers the possibility to download new images “on the fly”. In addition, OpenShift Container Platform can use third party registries such as:
- Https://hub.docker.com/
- Https://catalog.redhat.com/software/containers/search
Within this manual we are going to import an image from the Red Hat container catalog. In this example we’ll be using MediaWiki.
Search for the application in https://catalog.redhat.com/software/containers/search

https://preview.redd.it/c4mrbs0fitv51.png?width=672&format=png&auto=webp&s=f708f0542b53a9abf779be2d91d89cf09e9d2895
Navigate to “Get this image”
Follow the steps to “create a registry service account”, after that you can copy the YAML.
https://preview.redd.it/b4rrklqfitv51.png?width=1323&format=png&auto=webp&s=7a2eb14a3a1ba273b166e03e1410f06fd9ee1968
After the YAML has been copied we will go to the topology view and click on the YAML button
https://preview.redd.it/k3qzu8dgitv51.png?width=869&format=png&auto=webp&s=b1fefec67703d0a905b00765f0047fe7c6c0735b
Then we have to paste in the YAML, put in the name, namespace and your pull secret name (which you created through your registry account) and click on create.
https://preview.redd.it/iz48kltgitv51.png?width=781&format=png&auto=webp&s=4effc12e07bd294f64a326928804d9a931e4d2bd
Run the import command within powershell
$oc import-image openshift4/mediawiki --from=registry.redhat.io/openshift4/mediawiki --confirm imagestream.image.openshift.io/mediawiki imported 

Creating and managing an application

There are a few ways to create and manage applications. Within this demonstration we’ll show how to create an application from the previously imported image.

Creating the application

To create an image with the previously imported image go back to the console and topology. From here on select container image.
https://preview.redd.it/6506ea4iitv51.png?width=869&format=png&auto=webp&s=c0231d70bb16c76cd131e6b71256e93550cc8b37
For the option image you'll want to select the “image stream tag from internal registry” option. Give the application a name and then create the deployment.
https://preview.redd.it/tk72idniitv51.png?width=813&format=png&auto=webp&s=a4e662cf7b96604d84df9d04ab9b90b5436c803c
If everything went right during the creating process you should see the following, this means that the application is successfully running.
https://preview.redd.it/ovv9l85jitv51.png?width=901&format=png&auto=webp&s=f78f350207add0b8a979b6da931ff29ffa30128c

Scaling the application

In OpenShift there is a feature called autoscaling. There are two types of application scaling, namely vertical scaling, and horizontal scaling. Vertical scaling is adding only more CPU and hard disk and is no longer supported by OpenShift. Horizontal scaling is increasing the number of machines.
One of the ways to scale an application is by increasing the number of pods. This can be done by going to a pod within the view as seen in the previous step. By either pressing the up or down arrow more pods of the same application can be added. This is similar to horizontal scaling and can result in better performance when there are a lot of active users at the same time.
https://preview.redd.it/s6i1vbcrltv51.png?width=602&format=png&auto=webp&s=e62cbeeed116ba8c55704d61a990fc0d8f3cfaa1
In the picture above we see the number of nodes and pods and how many resources those nodes and pods are using. This is something to keep in mind if you want to scale up your application, the more you scale it up, the more resources it will take up.

https://preview.redd.it/quh037wmitv51.png?width=194&format=png&auto=webp&s=5e326647b223f3918c259b1602afa1b5fbbeea94

Network

Since OpenShift Container platform is built on Kubernetes it might be interesting to know some theory about its networking. Kubernetes, on which the OpenShift Container platform is built, ensures that the Pods within OpenShift can communicate with each other via the network and assigns them their own IP address. This makes all containers within the Pod behave as if they were on the same host. By giving each pod its own IP address, pods can be treated as physical hosts or virtual machines in terms of port mapping, networking, naming, service discovery, load balancing, application configuration and migration. To run multiple services such as front-end and back-end services, OpenShift Container Platform has a built-in DNS.
One of the changes that can be made to the networking of a Pod is the Route. We’ll show you how this can be done in this demonstration.
The Route is not the only thing that can be changed and or configured. Two other options that might be interesting but will not be demonstrated in this manual are:
- Ingress controller, Within OpenShift it is possible to set your own certificate. A user must have a certificate / key pair in PEM-encoded files, with the certificate signed by a trusted authority.
- Network policies, by default all pods in a project are accessible from other pods and network locations. To isolate one or more pods in a project, it is possible to create Network Policy objects in that project to indicate the allowed incoming connections. Project administrators can create and delete Network Policy objects within their own project.
There is a search function within the Container Platform. We’ll use this to search for the network routes and show how to add a new route.
https://preview.redd.it/8jkyhk8pitv51.png?width=769&format=png&auto=webp&s=9a8762df5bbae3d8a7c92db96b8cb70605a3d6da
You can add items that you use a lot to the navigation
https://preview.redd.it/t32sownqitv51.png?width=1598&format=png&auto=webp&s=6aab6f17bc9f871c591173493722eeae585a9232
For this example, we will add Routes to navigation.
https://preview.redd.it/pm3j7ljritv51.png?width=291&format=png&auto=webp&s=bc6fbda061afdd0780bbc72555d809b84a130b5b
Now that we’ve added Routes to the navigation, we can start the creation of the Route by clicking on “Create route”.
https://preview.redd.it/5lgecq0titv51.png?width=1603&format=png&auto=webp&s=d548789daaa6a8c7312a419393795b52da0e9f75
Fill in the name, select the service and the target port from the drop-down menu and click on Create.
https://preview.redd.it/qczgjc2uitv51.png?width=778&format=png&auto=webp&s=563f73f0dc548e3b5b2319ca97339e8f7b06c9d6
As you can see, we’ve successfully added the new route to our application.
https://preview.redd.it/gxfanp2vitv51.png?width=1588&format=png&auto=webp&s=1aae813d7ad0025f91013d884fcf62c5e7d109f1
Storage
OpenShift makes use of Persistent Storage, this type of storage uses persistent volume claims(PVC). PVC’s allow the developer to make persistent volumes without needing any knowledge about the underlying infrastructure.
Within this storage there are a few configuration options:
It is however important to know how to manually reclaim the persistent volumes, since if you delete PV the associated data will not be automatically deleted with it and therefore you cannot reassign the storage to another PV yet.
To manually reclaim the PV, you need to follow the following steps:
Step 1: Delete the PV, this can be done by executing the following command
$oc delete  
Step 2: Now you need to clean up the data on the associated storage asset
Step 3: Now you can delete the associated storage asset or if you with to reuse the same storage asset you can now create a PV with the storage asset definition.
It is also possible to directly change the reclaim policy within OpenShift, to do this you would need to follow the following steps:
Step 1: Get a list of the PVs in your cluster
$oc get pv 
This will give you a list of all the PV’s in your cluster and will display their following attributes: Name, Capacity, Accesmodes, Reclaimpolicy, Statusclaim, Storageclass, Reason and Age.
Step 2: Now choose the PV you wish to change and execute one of the following command’s, depending on your preferred policy:
$oc patch pv  -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}' 
In this example the reclaim policy will be changed to Retain.
$oc patch pv  -p '{"spec":{"persistentVolumeReclaimPolicy":"Recycle"}}' 
In this example the reclaim policy will be changed to Recycle.
$oc patch pv  -p '{"spec":{"persistentVolumeReclaimPolicy":"Delete"}}' 
In this example the reclaim policy will be changed to Delete.

Step 3: After this you can check the PV to verify the change by executing this command again:
$oc get pv 

Monitoring

Within Red Hat OpenShift there is the possibility to monitor the data that has been created by your containers, applications, and pods. To do so, click on the menu option in the top left corner. Check if you are logged in as Developer and click on “Monitoring”. Normally this function is not activated within the CodeReady containers, because it uses a lot of resources (Ram and CPU) to run.
https://preview.redd.it/an0wvn6zitv51.png?width=228&format=png&auto=webp&s=51abf8cc31bd763deb457d49514f99ee81d610ec
Once you have activated “Monitoring” you can change the “Time Range” and “Refresh Interval” in the top right corner of your screen. This will change the monitoring data on your screen.
https://preview.redd.it/e0yvzsh1jtv51.png?width=493&format=png&auto=webp&s=b2c563635cfa60ea7ce2f9c146aa994df6aa1c34
Within this function you can also monitor “Events”. These events are records of important information and are useful for monitoring and troubleshooting within the OpenShift Container Platform.
https://preview.redd.it/l90vkmp3jtv51.png?width=602&format=png&auto=webp&s=4e97f14bedaec7ededcdcda96e7823f77ced24c2

User management

According to the documentation of OpenShift is a user, an entity that interacts with the OpenShift Container Platform API. These can be a developer for developing applications or an administrator for managing the cluster. Users can be assigned to groups, which set the permissions applied to all the group’s members. For example, you can give API access to a group, which gives all members of the group API access.
There are multiple ways to create a user depending on the configured identity provider. The DenyAll identity provider is the default within OpenShift Container Platform. This default denies access for all the usernames and passwords.
First, we’re going to create a new user, the way this is done depends on the identity provider, this depends on the mapping method used as part of the identity provider configuration.
for more information on what mapping methods are and how they function:
https://docs.openshift.com/enterprise/3.1/install_config/configuring_authentication.html
With the default mapping method, the steps will be as following
$oc create user  
Next up, we’ll create an OpenShift Container Platform Identity. Use the name of the identity provider and the name that uniquely represents this identity in the scope of the identity provider:
$oc create identity : 
The is the name of the identity provider in the master configuration. For example, the following commands create an Identity with identity provider ldap_provider and the identity provider username mediawiki_s.
$oc create identity ldap_provider:mediawiki_s 
Create a useidentity mapping for the created user and identity:
$oc create useridentitymapping :  
For example, the following command maps the identity to the user:
$oc create useridentitymapping ldap_provider:mediawiki_s mediawiki 
Now were going to assign a role to this new user, this can be done by executing the following command:
$oc create clusterrolebinding  \ --clusterrole= --user= 
There is a --clusterrole option that can be used to give the user a specific role, like a cluster user with admin privileges. The cluster admin has access to all files and is able to manage the access level of other users.
Below is an example of the admin clusterrole command:
$oc create clusterrolebinding registry-controller \ --clusterrole=cluster-admin --user=admin 

What did you achieve?

If you followed all the steps within this manual you now should have a functioning Mediawiki Application running on your own CodeReady Containers. During the installation of this application on CodeReady Containers you have learned how to do the following things:
● Installing the CodeReady Containers
● Updating OpenShift
● Configuring a CodeReady Container
● Configuring the DNS
● Accessing the OpenShift cluster
● Deploying an application
● Creating new users
With these skills you’ll be able to set up your own Container Platform environment and host applications of your choosing.

Troubleshooting

Nameserver
There is the possibility that your CodeReady container can't connect to the internet due to a Nameserver error. When this is encountered a working fix for us was to stop the machine and then start the CRC machine with the following command:
C:\Users\[username]\$PATH>crc start -n 1.1.1.1 
Hyper-V admin
Should you run into a problem with Hyper-V it might be because your user is not an admin and therefore can’t access the Hyper-V admin user group.
  1. Click Start > Control Panel > Administration Tools > Computer Management. The Computer Management window opens.
  2. Click System Tools > Local Users and Groups > Groups. The list of groups opens.
  3. Double-click the Hyper-V Administrators group. The Hyper-V Administrators Properties window opens.
  4. Click Add. The Select Users or Groups window opens.
  5. In the Enter the object names to select field, enter the user account name to whom you want to assign permissions, and then click OK.
  6. Click Apply, and then click OK.

Terms and definitions

These terms and definitions will be expanded upon, below you can see an example of how this is going to look like together with a few terms that will require definitions.
Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications. Openshift is based on Kubernetes.
Clusters are a collection of multiple nodes which communicate with each other to perform a set of operations.
Containers are the basic units of OpenShift applications. These container technologies are lightweight mechanisms for isolating running processes so that they are limited to interacting with only their designated resources.
CodeReady Container is a minimal, preconfigured cluster that is used for development and testing purposes.
CodeReady Workspaces uses Kubernetes and containers to provide any member of the development or IT team with a consistent, secure, and zero-configuration development environment.

Sources

  1. https://www.ibm.com/support/knowledgecenteen/SSMKFH/com.ibm.apmaas.doc/install/hyperv_config_add_nonadmin_user_hyperv_usergroup.html
  2. https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/
  3. https://docs.openshift.com/container-platform/3.11/admin_guide/manage_users.html
submitted by Groep6HHS to openshift [link] [comments]

AJ ALMENDINGER

glimpse into the future of Roblox

Our vision to bring the world together through play has never been more relevant than it is now. As our founder and CEO, David Baszucki (a.k.a. Builderman), mentioned in his keynote, more and more people are using Roblox to stay connected with their friends and loved ones. He hinted at a future where, with our automatic machine translation technology, Roblox will one day act as a universal translator, enabling people from different cultures and backgrounds to connect and learn from each other.
During his keynote, Builderman also elaborated upon our vision to build the Metaverse; the future of avatar creation on the platform (infinitely customizable avatars that allow any body, any clothing, and any animation to come together seamlessly); more personalized game discovery; and simulating large social gatherings (like concerts, graduations, conferences, etc.) with tens of thousands of participants all in one server. We’re still very early on in this journey, but if these past five months have shown us anything, it’s clear that there is a growing need for human co-experience platforms like Roblox that allow people to play, create, learn, work, and share experiences together in a safe, civil 3D immersive space.
Up next, our VP of Developer Relations, Matt Curtis (a.k.a. m4rrh3w), shared an update on all the things we’re doing to continue empowering developers to create innovative and exciting content through collaboration, support, and expertise. He also highlighted some of the impressive milestones our creator community has achieved since last year’s RDC. Here are a few key takeaways:
And lastly, our VP of Engineering, Technology, Adam Miller (a.k.a. rbadam), unveiled a myriad of cool and upcoming features developers will someday be able to sink their teeth into. We saw a glimpse of procedural skies, skinned meshes, more high-quality materials, new terrain types, more fonts in Studio, a new asset type for in-game videos, haptic feedback on mobile, real-time CSG operations, and many more awesome tools that will unlock the potential for even bigger, more immersive experiences on Roblox.

Vibin’

Despite the virtual setting, RDC just wouldn’t have been the same without any fun party activities and networking opportunities. So, we invited special guests DJ Hyper Potions and cyber mentalist Colin Cloud for some truly awesome, truly mind-bending entertainment. Yoga instructor Erin Gilmore also swung by to inspire attendees to get out of their chair and get their body moving. And of course, we even had virtual rooms dedicated to karaoke and head-to-head social games, like trivia and Pictionary.
Over on the networking side, Team Adopt Me, Red Manta, StyLiS Studios, and Summit Studios hosted a virtual booth for attendees to ask questions, submit resumes, and more. We also had a networking session where three participants would be randomly grouped together to get to know each other.

What does Roblox mean to you?

We all know how talented the Roblox community is from your creations. We’ve heard plenty of stories over the years about how Roblox has touched your lives, how you’ve made friendships, learned new skills, or simply found a place where you can be yourself. We wanted to hear more. So, we asked attendees: What does Roblox mean to you? How has Roblox connected you? How has Roblox changed your life? Then, over the course of RDC, we incorporated your responses into this awesome mural.
📷
Created by Alece Birnbach at Graphic Recording Studio

Knowledge is power

This year’s breakout sessions included presentations from Roblox developers and staff members on the latest game development strategies, a deep dive into the Roblox engine, learning how to animate with Blender, tools for working together in teams, building performant game worlds, and the new Creator Dashboard. Dr. Michael Rich, Associate Professor at Harvard Medical School and Physician at Boston Children’s Hospital, also led attendees through a discussion on mental health and how to best take care of you and your friends’ emotional well-being, especially now during these challenging times.
📷
Making the Dream Work with Teamwork (presented by Roblox developer Myzta)
In addition to our traditional Q&A panel with top product and engineering leaders at Roblox, we also held a special session with Builderman himself to answer the community’s biggest questions.
📷
Roblox Product and Engineering Q&A Panel

2020 Game Jam

The Game Jam is always one of our favorite events of RDC. It’s a chance for folks to come together, flex their development skills, and come up with wildly inventive game ideas that really push the boundaries of what’s possible on Roblox. We had over 60 submissions this year—a new RDC record.
Once again, teams of up to six people from around the world had less than 24 hours to conceptualize, design, and publish a game based on the theme “2020 Vision,” all while working remotely no less! To achieve such a feat is nothing short of awe-inspiring, but as always, our dev community was more than up for the challenge. I’ve got to say, these were some of the finest creations we’ve seen.
WINNERS
Best in Show: Shapescape Created By: GhettoMilkMan, dayzeedog, maplestick, theloudscream, Brick_man, ilyannna You awaken in a strange laboratory, seemingly with no way out. Using a pair of special glasses, players must solve a series of anamorphic puzzles and optical illusions to make their escape.
Excellence in Visual Art: agn●sia Created By: boatbomber, thisfall, Elttob An obby experience unlike any other, this game is all about seeing the world through a different lens. Reveal platforms by switching between different colored lenses and make your way to the end.
Most Creative Gameplay: Visions of a perspective reality Created By: Noble_Draconian and Spathi Sometimes all it takes is a change in perspective to solve challenges. By switching between 2D and 3D perspectives, players can maneuver around obstacles or find new ways to reach the end of each level.
Outstanding Use of Tech: The Eyes of Providence Created By: Quenty, Arch_Mage, AlgyLacey, xJennyBeanx, Zomebody, Crykee This action/strategy game comes with a unique VR twist. While teams fight to construct the superior monument, two VR players can support their minions by collecting resources and manipulating the map.
Best Use of Theme: Sticker Situation Created By: dragonfrosting and Yozoh Set in a mysterious art gallery, players must solve puzzles by manipulating the environment using a magic camera and stickers. Snap a photograph, place down a sticker, and see how it changes the world.
OTHER TOP PICKS
HONORABLE MENTIONS
For the rest of the 2020 Game Jam submissions, check out the list below:
20-20 Vision | 20/20 Vision | 2020 Vision, A Crazy Perspective | 2020 Vision: Nyon | A Wild Trip! | Acuity | Best Year Ever | Better Half | Bloxlabs | Climb Stairs to 2021 | Double Vision (Team hey apple) | Eyebrawl | Eyeworm Exam | FIRE 2020 | HACKED | Hyperspective | Lucid Scream | Mystery Mansion | New Years at the Museum | New Year’s Bash | Poor Vision | Predict 2020 | RBC News | Retrovertigo | Second Wave | see no evil | Sight Fight | Sight Stealers | Spectacles Struggle | Specter Spectrum | Survive 2020 | The Lost Chicken Leg | The Outbreak | The Spyglass | Time Heist | Tunnel Vision | Virtual RDC – The Story | Vision (Team Freepunk) | Vision (Team VIP People ####) | Vision Developers Conference 2020 | Vision Is Key | Vision Perspective | Vision Racer | Visions | Zepto
And last but not least, we wanted to give a special shout out to Starboard Studios. Though they didn’t quite make it on time for our judges, we just had to include Dave’s Vision for good measure. 📷
Thanks to everyone who participated in the Game Jam, and congrats to all those who took home the dub in each of our categories this year. As the winners of Best in Show, the developers of Shapescape will have their names forever engraved on the RDC Game Jam trophy back at Roblox HQ. Great work!

‘Til next year

And that about wraps up our coverage of the first-ever digital RDC. Thanks to all who attended! Before we go, we wanted to share a special “behind the scenes” video from the 2020 RDC photoshoot.
Check it out:
It was absolutely bonkers. Getting 350 of us all in one server was so much fun and really brought back the feeling of being together with everyone again. That being said, we can’t wait to see you all—for real this time—at RDC next year. It’s going to be well worth the wait. ‘Til we meet again, my friends.
© 2020 Roblox Corporation. All Rights Reserved.

Improving Simulation and Performance with an Advanced Physics Solver

August

05, 2020

by chefdeletat
PRODUCT & TECH
📷In mid-2015, Roblox unveiled a major upgrade to its physics engine: the Projected Gauss-Seidel (PGS) physics solver. For the first year, the new solver was optional and provided improved fidelity and greater performance compared to the previously used spring solver.
In 2016, we added support for a diverse set of new physics constraints, incentivizing developers to migrate to the new solver and extending the creative capabilities of the physics engine. Any new places used the PGS solver by default, with the option of reverting back to the classic solver.
We ironed out some stability issues associated with high mass differences and complex mechanisms by the introduction of the hybrid LDL-PGS solver in mid-2018. This made the old solver obsolete, and it was completely disabled in 2019, automatically migrating all places to the PGS.
In 2019, the performance was further improved using multi-threading that splits the simulation into jobs consisting of connected islands of simulating parts. We still had performance issues related to the LDL that we finally resolved in early 2020.
The physics engine is still being improved and optimized for performance, and we plan on adding new features for the foreseeable future.

Implementing the Laws of Physics

📷
The main objective of a physics engine is to simulate the motion of bodies in a virtual environment. In our physics engine, we care about bodies that are rigid, that collide and have constraints with each other.
A physics engine is organized into two phases: collision detection and solving. Collision detection finds intersections between geometries associated with the rigid bodies, generating appropriate collision information such as collision points, normals and penetration depths. Then a solver updates the motion of rigid bodies under the influence of the collisions that were detected and constraints that were provided by the user.
📷
The motion is the result of the solver interpreting the laws of physics, such as conservation of energy and momentum. But doing this 100% accurately is prohibitively expensive, and the trick to simulating it in real-time is to approximate to increase performance, as long as the result is physically realistic. As long as the basic laws of motion are maintained within a reasonable tolerance, this tradeoff is completely acceptable for a computer game simulation.

Taking Small Steps

The main idea of the physics engine is to discretize the motion using time-stepping. The equations of motion of constrained and unconstrained rigid bodies are very difficult to integrate directly and accurately. The discretization subdivides the motion into small time increments, where the equations are simplified and linearized making it possible to solve them approximately. This means that during each time step the motion of the relevant parts of rigid bodies that are involved in a constraint is linearly approximated.
📷📷
Although a linearized problem is easier to solve, it produces drift in a simulation containing non-linear behaviors, like rotational motion. Later we’ll see mitigation methods that help reduce the drift and make the simulation more plausible.

Solving

📷
Having linearized the equations of motion for a time step, we end up needing to solve a linear system or linear complementarity problem (LCP). These systems can be arbitrarily large and can still be quite expensive to solve exactly. Again the trick is to find an approximate solution using a faster method. A modern method to approximately solve an LCP with good convergence properties is the Projected Gauss-Seidel (PGS). It is an iterative method, meaning that with each iteration the approximate solution is brought closer to the true solution, and its final accuracy depends on the number of iterations.
📷
This animation shows how a PGS solver changes the positions of the bodies at each step of the iteration process, the objective being to find the positions that respect the ball and socket constraints while preserving the center of mass at each step (this is a type of positional solver used by the IK dragger). Although this example has a simple analytical solution, it’s a good demonstration of the idea behind the PGS. At each step, the solver fixes one of the constraints and lets the other be violated. After a few iterations, the bodies are very close to their correct positions. A characteristic of this method is how some rigid bodies seem to vibrate around their final position, especially when coupling interactions with heavier bodies. If we don’t do enough iterations, the yellow part might be left in a visibly invalid state where one of its two constraints is dramatically violated. This is called the high mass ratio problem, and it has been the bane of physics engines as it causes instabilities and explosions. If we do too many iterations, the solver becomes too slow, if we don’t it becomes unstable. Balancing the two sides has been a painful and long process.

Mitigation Strategies

📷A solver has two major sources of inaccuracies: time-stepping and iterative solving (there is also floating point drift but it’s minor compared to the first two). These inaccuracies introduce errors in the simulation causing it to drift from the correct path. Some of this drift is tolerable like slightly different velocities or energy loss, but some are not like instabilities, large energy gains or dislocated constraints.
Therefore a lot of the complexity in the solver comes from the implementation of methods to minimize the impact of computational inaccuracies. Our final implementation uses some traditional and some novel mitigation strategies:
  1. Warm starting: starting with the solution from a previous time-step to increase the convergence rate of the iterative solver
  2. Post-stabilization: reprojecting the system back to the constraint manifold to prevent constraint drift
  3. Regularization: adding compliance to the constraints ensuring a solution exists and is unique
  4. Pre-conditioning: using an exact solution to a linear subsystem, improving the stability of complex mechanisms
Strategies 1, 2 and 3 are pretty traditional, but 3 has been improved and perfected by us. Also, although 4 is not unheard of, we haven’t seen any practical implementation of it. We use an original factorization method for large sparse constraint matrices and a new efficient way of combining it with the PGS. The resulting implementation is only slightly slower compared to pure PGS but ensures that the linear system coming from equality constraints is solved exactly. Consequently, the equality constraints suffer only from drift coming from the time discretization. Details on our methods are contained in my GDC 2020 presentation. Currently, we are investigating direct methods applied to inequality constraints and collisions.

Getting More Details

Traditionally there are two mathematical models for articulated mechanisms: there are reduced coordinate methods spearheaded by Featherstone, that parametrize the degrees of freedom at each joint, and there are full coordinate methods that use a Lagrangian formulation.
We use the second formulation as it is less restrictive and requires much simpler mathematics and implementation.
The Roblox engine uses analytical methods to compute the dynamic response of constraints, as opposed to penalty methods that were used before. Analytics methods were initially introduced in Baraff 1989, where they are used to treat both equality and non-equality constraints in a consistent manner. Baraff observed that the contact model can be formulated using quadratic programming, and he provided a heuristic solution method (which is not the method we use in our solver).
Instead of using force-based formulation, we use an impulse-based formulation in velocity space, originally introduced by Mirtich-Canny 1995 and further improved by Stewart-Trinkle 1996, which unifies the treatment of different contact types and guarantees the existence of a solution for contacts with friction. At each timestep, the constraints and collisions are maintained by applying instantaneous changes in velocities due to constraint impulses. An excellent explanation of why impulse-based simulation is superior is contained in the GDC presentation of Catto 2014.
The frictionless contacts are modeled using a linear complementarity problem (LCP) as described in Baraff 1994. Friction is added as a non-linear projection onto the friction cone, interleaved with the iterations of the Projected Gauss-Seidel.
The numerical drift that introduces positional errors in the constraints is resolved using a post-stabilization technique using pseudo-velocities introduced by Cline-Pai 2003. It involves solving a second LCP in the position space, which projects the system back to the constraint manifold.
The LCPs are solved using a PGS / Impulse Solver popularized by Catto 2005 (also see Catto 2009). This method is iterative and considers each individual constraints in sequence and resolves it independently. Over many iterations, and in ideal conditions, the system converges to a global solution.
Additionally, high mass ratio issues in equality constraints are ironed out by preconditioning the PGS using the sparse LDL decomposition of the constraint matrix of equality constraints. Dense submatrices of the constraint matrix are sparsified using a method we call Body Splitting. This is similar to the LDL decomposition used in Baraff 1996, but allows more general mechanical systems, and solves the system in constraint space. For more information, you can see my GDC 2020 presentation.
The architecture of our solver follows the idea of Guendelman-Bridson-Fedkiw, where the velocity and position stepping are separated by the constraint resolution. Our time sequencing is:
  1. Advance velocities
  2. Constraint resolution in velocity space and position space
  3. Advance positions
This scheme has the advantage of integrating only valid velocities, and limiting latency in external force application but allowing a small amount of perceived constraint violation due to numerical drift.
An excellent reference for rigid body simulation is the book Erleben 2005 that was recently made freely available. You can find online lectures about physics-based animation, a blog by Nilson Souto on building a physics engine, a very good GDC presentation by Erin Catto on modern solver methods, and forums like the Bullet Physics Forum and GameDev which are excellent places to ask questions.

In Conclusion

The field of game physics simulation presents many interesting problems that are both exciting and challenging. There are opportunities to learn a substantial amount of cool mathematics and physics and to use modern optimizations techniques. It’s an area of game development that tightly marries mathematics, physics and software engineering.
Even if Roblox has a good rigid body physics engine, there are areas where it can be improved and optimized. Also, we are working on exciting new projects like fracturing, deformation, softbody, cloth, aerodynamics and water simulation.
Neither Roblox Corporation nor this blog endorses or supports any company or service. Also, no guarantees or promises are made regarding the accuracy, reliability or completeness of the information contained in this blog.
This blog post was originally published on the Roblox Tech Blog.
© 2020 Roblox Corporation. All Rights Reserved.

Using Clang to Minimize Global Variable Use

July

23, 2020

by RandomTruffle
PRODUCT & TECH
Every non-trivial program has at least some amount of global state, but too much can be a bad thing. In C++ (which constitutes close to 100% of Roblox’s engine code) this global state is initialized before main() and destroyed after returning from main(), and this happens in a mostly non-deterministic order. In addition to leading to confusing startup and shutdown semantics that are difficult to reason about (or change), it can also lead to severe instability.
Roblox code also creates a lot of long-running detached threads (threads which are never joined and just run until they decide to stop, which might be never). These two things together have a very serious negative interaction on shutdown, because long-running threads continue accessing the global state that is being destroyed. This can lead to elevated crash rates, test suite flakiness, and just general instability.
The first step to digging yourself out of a mess like this is to understand the extent of the problem, so in this post I’m going to talk about one technique you can use to gain visibility into your global startup flow. I’m also going to discuss how we are using this to improve stability across the entire Roblox game engine platform by decreasing our use of global variables.

Introducing -finstrument-functions

Nothing excites me more than learning about a new obscure compiler option that I’ve never had a use for before, so I was pretty happy when a colleague pointed me to this option in the Clang Command Line Reference. I’d never used it before, but it sounded very cool. The idea being that if we could get the compiler to tell us every time it entered and exited a function, we could filter this information through a symbolizer of some kind and generate a report of functions that a) occur before main(), and b) are the very first function in the call-stack (indicating it’s a global).
Unfortunately, the documentation basically just tells you that the option exists with no mention of how to use it or if it even actually does what it sounds like it does. There’s also two different options that sound similar to each other (-finstrument-functions and -finstrument-functions-after-inlining), and I still wasn’t entirely sure what the difference was. So I decided to throw up a quick sample on godbolt to see what happened, which you can see here. Note there are two assembly outputs for the same source listing. One uses the first option and the other uses the second option, and we can compare the assembly output to understand the differences. We can gather a few takeaways from this sample:
  1. The compiler is injecting calls to __cyg_profile_func_enter and __cyg_profile_func_exit inside of every function, inline or not.
  2. The only difference between the two options occurs at the call-site of an inline function.
  3. With -finstrument-functions, the instrumentation for the inlined function is inserted at the call-site, whereas with -finstrument-functions-after-inlining we only have instrumentation for the outer function. This means that when using-finstrument-functions-after-inlining you won’t be able to determine which functions are inlined and where.
Of course, this sounds exactly like what the documentation said it did, but sometimes you just need to look under the hood to convince yourself.
To put all of this another way, if we want to know about calls to inline functions in this trace we need to use -finstrument-functions because otherwise their instrumentation is silently removed by the compiler. Sadly, I was never able to get -finstrument-functions to work on a real example. I would always end up with linker errors deep in the Standard C++ Library which I was unable to figure out. My best guess is that inlining is often a heuristic, and this can somehow lead to subtle ODR (one-definition rule) violations when the optimizer makes different inlining decisions from different translation units. Luckily global constructors (which is what we care about) cannot possibly be inlined anyway, so this wasn’t a problem.
I suppose I should also mention that I still got tons of linker errors with -finstrument-functions-after-inlining as well, but I did figure those out. As best as I can tell, this option seems to imply –whole-archive linker semantics. Discussion of –whole-archive is outside the scope of this blog post, but suffice it to say that I fixed it by using linker groups (e.g. -Wl,–start-group and -Wl,–end-group) on the compiler command line. I was a bit surprised that we didn’t get these same linker errors without this option and still don’t totally understand why. If you happen to know why this option would change linker semantics, please let me know in the comments!

Implementing the Callback Hooks

If you’re astute, you may be wondering what in the world __cyg_profile_func_enter and __cyg_profile_func_exit are and why the program is even successfully linking in the first without giving undefined symbol reference errors, since the compiler is apparently trying to call some function we’ve never defined. Luckily, there are some options that allow us to see inside the linker’s algorithm so we can find out where it’s getting this symbol from to begin with. Specifically, -y should tell us how the linker is resolving . We’ll try it with a dummy program first and a symbol that we’ve defined ourselves, then we’ll try it with __cyg_profile_func_enter .
[email protected]:~/src/sandbox$ cat instr.cpp int main() {} [email protected]:~/src/sandbox$ clang++-9 -fuse-ld=lld -Wl,-y -Wl,main instr.cpp /usbin/../lib/gcc/x86_64-linux-gnu/crt1.o: reference to main /tmp/instr-5b6c60.o: definition of main
No surprises here. The C Runtime Library references main(), and our object file defines it. Now let’s see what happens with __cyg_profile_func_enter and -finstrument-functions-after-inlining.
[email protected]:~/src/sandbox$ clang++-9 -fuse-ld=lld -finstrument-functions-after-inlining -Wl,-y -Wl,__cyg_profile_func_enter instr.cpp /tmp/instr-8157b3.o: reference to __cyg_profile_func_enter /lib/x86_64-linux-gnu/libc.so.6: shared definition of __cyg_profile_func_enter
Now, we see that libc provides the definition, and our object file references it. Linking works a bit differently on Unix-y platforms than it does on Windows, but basically this means that if we define this function ourselves in our cpp file, the linker will just automatically prefer it over the shared library version. Working godbolt link without runtime output is here. So now you can kind of see where this is going, however there are still a couple of problems left to solve.
  1. We don’t want to do this for a full run of the program. We want to stop as soon as we reach main.
  2. We need a way to symbolize this trace.
The first problem is easy to solve. All we need to do is compare the address of the function being called to the address of main, and set a flag indicating we should stop tracing henceforth. (Note that taking the address of main is undefined behavior[1], but for our purposes it gets the job done, and we aren’t shipping this code, so ¯\_(ツ)_/¯). The second problem probably deserves a little more discussion though.

Symbolizing the Traces

In order to symbolize these traces, we need two things. First, we need to store the trace somewhere on persistent storage. We can’t expect to symbolize in real time with any kind of reasonable performance. You can write some C code to save the trace to some magic filename, or you can do what I did and just write it to stderr (this way you can pipe stderr to some file when you run it).
Second, and perhaps more importantly, for every address we need to write out the full path to the module the address belongs to. Your program loads many shared libraries, and in order to translate an address into a symbol, we have to know which shared library or executable the address actually belongs to. In addition, we have to be careful to write out the address of the symbol in the file on disk. When your program is running, the operating system could have loaded it anywhere in memory. And if we’re going to symbolize it after the fact we need to make sure we can still reference it after the information about where it was loaded in memory is lost. The linux function dladdr() gives us both pieces of information we need. A working godbolt sample with the exact implementation of our instrumentation hooks as they appear in our codebase can be found here.

Putting it All Together

Now that we have a file in this format saved on disk, all we need to do is symbolize the addresses. addr2line is one option, but I went with llvm-symbolizer as I find it more robust. I wrote a Python script to parse the file and symbolize each address, then print it in the same “visual” hierarchical format that the original output file is in. There are various options for filtering the resulting symbol list so that you can clean up the output to include only things that are interesting for your case. For example, I filtered out any globals that have boost:: in their name, because I can’t exactly go rewrite boost to not use global variables.
The script isn’t as simple as you would think, because simply crawling each line and symbolizing it would be unacceptably slow (when I tried this, it took over 2 hours before I finally killed the process). This is because the same address might appear thousands of times, and there’s no reason to run llvm-symbolizer against the same address multiple times. So there’s a lot of smarts in there to pre-process the address list and eliminate duplicates. I won’t discuss the implementation in more detail because it isn’t super interesting. But I’ll do even better and provide the source!
So after all of this, we can run any one of our internal targets to get the call tree, run it through the script, and then get output like this (actual output from a Roblox process, source file information removed):
excluded_symbols = [‘.\boost.*’]* excluded_modules = [‘/usr.\’]* /uslib/x86_64-linux-gnu/libLLVM-9.so.1: 140 unique addresses InterestingRobloxProcess: 38928 unique addresses /uslib/x86_64-linux-gnu/libstdc++.so.6: 1 unique addresses /uslib/x86_64-linux-gnu/libc++.so.1: 3 unique addresses Printing call tree with depth 2 for 29276 global variables. __cxx_global_var_init.5 (InterestingFile1.cpp:418:22) RBX::InterestingRobloxClass2::InterestingRobloxClass2() (InterestingFile2.cpp.:415:0) __cxx_global_var_init.19 (InterestingFile2.cpp:183:34) (anonymous namespace)::InterestingRobloxClass2::InterestingRobloxClass2() (InterestingFile2.cpp:171:0) __cxx_global_var_init.274 (InterestingFile3.cpp:2364:33) RBX::InterestingRobloxClass3::InterestingRobloxClass3()
So there you have it: the first half of the battle is over. I can run this script on every platform, compare results to understand what order our globals are actually initialized in in practice, then slowly migrate this code out of global initializers and into main where it can be deterministic and explicit.

Future Work

It occurred to me sometime after implementing this that we could make a general purpose profiling hook that exposed some public symbols (dllexport’ed if you speak Windows), and allowed a plugin module to hook into this dynamically. This plugin module could filter addresses using whatever arbitrary logic that it was interested in. One interesting use case I came up for this is that it could look up the debug information, check if the current address maps to the constructor of a function local static, and write out the address if so. This effectively allows us to gain a deeper understanding of the order in which our lazy statics are initialized. The possibilities are endless here.

Further Reading

If you’re interested in this kind of thing, I’ve collected a couple of my favorite references for this kind of topic.
  1. Various: The C++ Language Standard
  2. Matt Godbolt: The Bits Between the Bits: How We Get to main()
  3. Ryan O’Neill: Learning Linux Binary Analysis
  4. Linkers and Loaders: John R. Levine
  5. https://eel.is/c++draft/basic.exec#basic.start.main-3
Neither Roblox Corporation nor this blog endorses or supports any company or service. Also, no guarantees or promises are made regarding the accuracy, reliability or completeness of the information contained in this blog.
submitted by jaydenweez to u/jaydenweez [link] [comments]

Space Engineers Feb 2019 public test UNOFFICIAL survey results (data dump)

Results are from 71 valid responses (86 responses total but 15 hadn't actually played the test) Thanks to all that submitted responses!

Graphical results

https://imgur.com/a/Ff1FF3i

New block comments

Progression tree comments

Cargo ship / random encounter comments

New spawning system comments

Temperature mechanic comments

New chat / inventory size comments

Overall test comments

This is a pretty amazing update. Nice job, Keen! I look forward to seeing the full release. Here are a few things I really like, in no particular order:
With that said, there's still room for improvement:
I also have a few things I'd like to see in future updates:
And to everyone at Keen Software House, seriously, great update. I love Space Engineers, and I love to see it improve. Keep up the great work!
submitted by lilbigmouth to spaceengineers [link] [comments]

Beginner’s Guide to BitMEX

Beginner’s Guide to BitMEX

https://preview.redd.it/fl5e0q7i3cc41.jpg?width=1024&format=pjpg&auto=webp&s=445485d722839a9adc1ae13db4c965b0ae3e67b7
Founded by HDR Global Trading Limited (which in turn was founded by former bankers Arthur Hayes, Samuel Reed and Ben Delo) in 2014, BitMEX is a trading platform operating around the world and registered in the Seychelles.
Meaning Bitcoin Mercantile Exchange, BitMEX is one of the largest Bitcoin trading platforms currently operating, with a daily trading volume of over 35,000 BTC and over 540,000 accesses monthly and a trading history of over $34 billion worth of Bitcoin since its inception.

https://preview.redd.it/coenpm4k3cc41.jpg?width=808&format=pjpg&auto=webp&s=8832dcafa5bd615b511bbeb6118ef43d73ed785e
Unlike many other trading exchanges, BitMEX only accepts deposits through Bitcoin, which can then be used to purchase a variety of other cryptocurrencies. BitMEX specialises in sophisticated financial operations such as margin trading, which is trading with leverage. Like many of the exchanges that operate through cryptocurrencies, BitMEX is currently unregulated in any jurisdiction.
Visit BitMEX

How to Sign Up to BitMEX

In order to create an account on BitMEX, users first have to register with the website. Registration only requires an email address, the email address must be a genuine address as users will receive an email to confirm registration in order to verify the account. Once users are registered, there are no trading limits. Traders must be at least 18 years of age to sign up.
https://preview.redd.it/0v13qoil3cc41.jpg?width=808&format=pjpg&auto=webp&s=e6134bc089c4e352dce10d754dc84ff11a4c7994
However, it should be noted that BitMEX does not accept any US-based traders and will use IP checks to verify that users are not in the US. While some US users have bypassed this with the use of a VPN, it is not recommended that US individuals sign up to the BitMEX service, especially given the fact that alternative exchanges are available to service US customers that function within the US legal framework.
How to Use BitMEX
BitMEX allows users to trade cryptocurrencies against a number of fiat currencies, namely the US Dollar, the Japanese Yen and the Chinese Yuan. BitMEX allows users to trade a number of different cryptocurrencies, namely Bitcoin, Bitcoin Cash, Dash, Ethereum, Ethereum Classic, Litecoin, Monero, Ripple, Tezos and Zcash.
The trading platform on BitMEX is very intuitive and easy to use for those familiar with similar markets. However, it is not for the beginner. The interface does look a little dated when compared to newer exchanges like Binance and Kucoin’s.
Once users have signed up to the platform, they should click on Trade, and all the trading instruments will be displayed beneath.
Clicking on the particular instrument opens the orderbook, recent trades, and the order slip on the left. The order book shows three columns – the bid value for the underlying asset, the quantity of the order, and the total USD value of all orders, both short and long.
The widgets on the trading platform can be changed according to the user’s viewing preferences, allowing users to have full control on what is displayed. It also has a built in feature that provides for TradingView charting. This offers a wide range of charting tool and is considered to be an improvement on many of the offering available from many of its competitors.
https://preview.redd.it/fabg1nxo3cc41.jpg?width=808&format=pjpg&auto=webp&s=6d939889c3eac15ab1e78ec37a8ccd13fc5e0573
Once trades are made, all orders can be easily viewed in the trading platform interface. There are tabs where users can select their Active Orders, see the Stops that are in place, check the Orders Filled (total or partially) and the trade history. On the Active Orders and Stops tabs, traders can cancel any order, by clicking the “Cancel” button. Users also see all currently open positions, with an analysis if it is in the black or red.
BitMEX uses a method called auto-deleveraging which BitMEX uses to ensure that liquidated positions are able to be closed even in a volatile market. Auto-deleveraging means that if a position bankrupts without available liquidity, the positive side of the position deleverages, in order of profitability and leverage, the highest leveraged position first in queue. Traders are always shown where they sit in the auto-deleveraging queue, if such is needed.
Although the BitMEX platform is optimized for mobile, it only has an Android app (which is not official). There is no iOS app available at present. However, it is recommended that users use it on the desktop if possible.
BitMEX offers a variety of order types for users:
  • Limit Order (the order is fulfilled if the given price is achieved);
  • Market Order (the order is executed at current market price);
  • Stop Limit Order (like a stop order, but allows users to set the price of the Order once the Stop Price is triggered);
  • Stop Market Order (this is a stop order that does not enter the order book, remain unseen until the market reaches the trigger);
  • Trailing Stop Order (it is similar to a Stop Market order, but here users set a trailing value that is used to place the market order);
  • Take Profit Limit Order (this can be used, similarly to a Stop Order, to set a target price on a position. In this case, it is in respect of making gains, rather than cutting losses);
  • Take Profit Market Order (same as the previous type, but in this case, the order triggered will be a market order, and not a limit one)
The exchange offers margin trading in all of the cryptocurrencies displayed on the website. It also offers to trade with futures and derivatives – swaps.

Futures and Swaps

A futures contract is an agreement to buy or sell a given asset in the future at a predetermined price. On BitMEX, users can leverage up to 100x on certain contracts.
Perpetual swaps are similar to futures, except that there is no expiry date for them and no settlement. Additionally, they trade close to the underlying reference Index Price, unlike futures, which may diverge substantially from the Index Price.
BitMEX also offers Binary series contracts, which are prediction-based contracts which can only settle at either 0 or 100. In essence, the Binary series contracts are a more complicated way of making a bet on a given event.
The only Binary series betting instrument currently available is related to the next 1mb block on the Bitcoin blockchain. Binary series contracts are traded with no leverage, a 0% maker fee, a 0.25% taker fee and 0.25% settlement fee.

Bitmex Leverage

BitMEX allows its traders to leverage their position on the platform. Leverage is the ability to place orders that are bigger than the users’ existing balance. This could lead to a higher profit in comparison when placing an order with only the wallet balance. Trading in such conditions is called “Margin Trading.”
There are two types of Margin Trading: Isolated and Cross-Margin. The former allows the user to select the amount of money in their wallet that should be used to hold their position after an order is placed. However, the latter provides that all of the money in the users’ wallet can be used to hold their position, and therefore should be treated with extreme caution.
https://preview.redd.it/eg4qk9qr3cc41.jpg?width=808&format=pjpg&auto=webp&s=c3ca8cdf654330ce53e8138d774e72155acf0e7e
The BitMEX platform allows users to set their leverage level by using the leverage slider. A maximum leverage of 1:100 is available (on Bitcoin and Bitcoin Cash). This is quite a high level of leverage for cryptocurrencies, with the average offered by other exchanges rarely exceeding 1:20.

BitMEX Fees

For traditional futures trading, BitMEX has a straightforward fee schedule. As noted, in terms of leverage offered, BitMEX offers up to 100% leverage, with the amount off leverage varying from product to product.
However, it should be noted that trading at the highest leverages is sophisticated and is intended for professional investors that are familiar with speculative trading. The fees and leverage are as follows:
https://preview.redd.it/wvhiepht3cc41.jpg?width=730&format=pjpg&auto=webp&s=0617eb894c13d3870211a01d51af98561907cb99

https://preview.redd.it/qhi8izcu3cc41.jpg?width=730&format=pjpg&auto=webp&s=09da4efe1de4214b0b5b9c7501aba5320e846b4c
However, there are additional fees for hidden / iceberg orders. A hidden order pays the taker fee until the entire hidden quantity is completely executed. Then, the order will become normal, and the user will receive the maker rebate for the non-hidden amount.

Deposits and Withdrawals

BitMEX does not charge fees on deposits or withdrawals. However, when withdrawing Bitcoin, the minimum Network fee is based on blockchain load. The only costs therefore are those of the banks or the cryptocurrency networks.
As noted previously, BitMEX only accepts deposits in Bitcoin and therefore Bitcoin serves as collateral on trading contracts, regardless of whether or not the trade involves Bitcoin.
The minimum deposit is 0.001 BTC. There are no limits on withdrawals, but withdrawals can also be in Bitcoin only. To make a withdrawal, all that users need to do is insert the amount to withdraw and the wallet address to complete the transfer.
https://preview.redd.it/xj1kbuew3cc41.jpg?width=808&format=pjpg&auto=webp&s=68056f2247001c63e89c880cfbb75b2f3616e8fe
Deposits can be made 24/7 but withdrawals are processed by hand at a recurring time once per day. The hand processed withdrawals are intended to increase the security levels of users’ funds by providing extra time (and email notice) to cancel any fraudulent withdrawal requests, as well as bypassing the use of automated systems & hot wallets which may be more prone to compromise.

Supported Currencies

BitMEX operates as a crypto to crypto exchange and makes use of a Bitcoin-in/Bitcoin-out structure. Therefore, platform users are currently unable to use fiat currencies for any payments or transfers, however, a plus side of this is that there are no limits for trading and the exchange incorporates trading pairs linked to the US Dollar (XBT), Japanese Yen (XBJ), and Chinese Yuan (XBC).
BitMEX supports the following cryptocurrencies:
  • Bitcoin (XBT)
  • Bitcoin Cash (BCH)
  • Ethereum (ETH)
  • Ethereum Classic (ETC)
  • Litecoin (LTC)
  • Ripple Token (XRP)
  • Monero (XMR)
  • Dash (DASH)
  • Zcash (ZEC)
  • Cardano (ADA)
  • Tron (TRX)
  • EOS Token (EOS)
BitMEX also offers leverage options on the following coins:
  • 5x: Zcash (ZEC)
  • 20x : Ripple (XRP),Bitcoin Cash (BCH), Cardano (ADA), EOS Token (EOS), Tron (TRX)
  • 25x: Monero (XMR)
  • 33x: Litecoin (LTC)
  • 50x: Ethereum (ETH)
  • 100x: Bitcoin (XBT), Bitcoin / Yen (XBJ), Bitcoin / Yuan (XBC)

Trading Technologies International Partnership

HDR Global Trading, the company which owns BitMEX, has recently announced a partnership with Trading Technologies International, Inc. (TT), a leading international high-performance trading software provider.
The TT platform is designed specifically for professional traders, brokers, and market-access providers, and incorporates a wide variety of trading tools and analytical indicators that allow even the most advanced traders to customize the software to suit their unique trading styles. The TT platform also provides traders with global market access and trade execution through its privately managed infrastructure and the partnership will see BitMEX users gaining access to the trading tools on all BitMEX products, including the popular XBT/USD Perpetual Swap pairing.
https://preview.redd.it/qcqunaby3cc41.png?width=672&format=png&auto=webp&s=b77b45ac2b44a9af30a4985e3d9dbafc9bbdb77c

The BitMEX Insurance Fund

The ability to trade on leverage is one of the exchange’s main selling points and offering leverage and providing the opportunity for traders to trade against each other may result in a situation where the winners do not receive all of their expected profits. As a result of the amounts of leverage involved, it’s possible that the losers may not have enough margin in their positions to pay the winners.
Traditional exchanges like the Chicago Mercantile Exchange (CME) offset this problem by utilizing multiple layers of protection and cryptocurrency trading platforms offering leverage cannot currently match the levels of protection provided to winning traders.
In addition, cryptocurrency exchanges offering leveraged trades propose a capped downside and unlimited upside on a highly volatile asset with the caveat being that on occasion, there may not be enough funds in the system to pay out the winners.
To help solve this problem, BitMEX has developed an insurance fund system, and when a trader has an open leveraged position, their position is forcefully closed or liquidated when their maintenance margin is too low.
Here, a trader’s profit and loss does not reflect the actual price their position was closed on the market, and with BitMEX when a trader is liquidated, their equity associated with the position drops down to zero.
In the following example, the trader has taken a 100x long position. In the event that the mark price of Bitcoin falls to $3,980 (by 0.5%), then the position gets liquidated with the 100 Bitcoin position needing to be sold on the market.
This means that it does not matter what price this trade executes at, namely if it’s $3,995 or $3,000, as from the view of the liquidated trader, regardless of the price, they lose all the equity they had in their position, and lose the entire one Bitcoin.
https://preview.redd.it/wel3rka04cc41.png?width=669&format=png&auto=webp&s=3f93dac2d3b40aa842d281384113d2e26f25947e
Assuming there is a fully liquid market, the bid/ask spread should be tighter than the maintenance margin. Here, liquidations manifest as contributions to the insurance fund (e.g. if the maintenance margin is 50bps, but the market is 1bp wide), and the insurance fund should rise by close to the same amount as the maintenance margin when a position is liquidated. In this scenario, as long as healthy liquid markets persist, the insurance fund should continue its steady growth.
The following graphs further illustrate the example, and in the first chart, market conditions are healthy with a narrow bid/ask spread (just $2) at the time of liquidation. Here, the closing trade occurs at a higher price than the bankruptcy price (the price where the margin balance is zero) and the insurance fund benefits.
Illustrative example of an insurance contribution – Long 100x with 1 BTC collateral
https://preview.redd.it/is89ep924cc41.png?width=699&format=png&auto=webp&s=f0419c68fe88703e594c121b5b742c963c7e2229
(Note: The above illustration is based on opening a 100x long position at $4,000 per BTC and 1 Bitcoin of collateral. The illustration is an oversimplification and ignores factors such as fees and other adjustments.
The bid and offer prices represent the state of the order book at the time of liquidation. The closing trade price is $3,978, representing $1 of slippage compared to the $3,979 bid price at the time of liquidation.)
The second chart shows a wide bid/ask spread at the time of liquidation, here, the closing trade takes place at a lower price than the bankruptcy price, and the insurance fund is used to make sure that winning traders receive their expected profits.
This works to stabilize the potential for returns as there is no guarantee that healthy market conditions can continue, especially during periods of heightened price volatility. During these periods, it’s actually possible that the insurance fund can be used up than it is built up.
Illustrative example of an insurance depletion – Long 100x with 1 BTC collateral
https://preview.redd.it/vb4mj3n54cc41.png?width=707&format=png&auto=webp&s=0c63b7c99ae1c114d8e3b947fb490e9144dfe61b
(Notes: The above illustration is based on opening a 100x long position at $4,000 per BTC and 1 Bitcoin of collateral. The illustration is an oversimplification and ignores factors such as fees and other adjustments.
The bid and offer prices represent the state of the order book at the time of liquidation. The closing trade price is $3,800, representing $20 of slippage compared to the $3,820 bid price at the time of liquidation.)
The exchange declared in February 2019, that the BitMEX insurance fund retained close to 21,000 Bitcoin (around $70 million based on Bitcoin spot prices at the time).
This figure represents just 0.007% of BitMEX’s notional annual trading volume, which has been quoted as being approximately $1 trillion. This is higher than the insurance funds as a proportion of trading volume of the CME, and therefore, winning traders on BitMEX are exposed to much larger risks than CME traders as:
  • BitMEX does not have clearing members with large balance sheets and traders are directly exposed to each other.
  • BitMEX does not demand payments from traders with negative account balances.
  • The underlying instruments on BitMEX are more volatile than the more traditional instruments available on CME.
Therefore, with the insurance fund remaining capitalized, the system effectively with participants who get liquidated paying for liquidations, or a losers pay for losers mechanism.
This system may appear controversial as first, though some may argue that there is a degree of uniformity to it. It’s also worth noting that the exchange also makes use of Auto Deleveraging which means that on occasion, leveraged positions in profit can still be reduced during certain time periods if a liquidated order cannot be executed in the market.
More adventurous traders should note that while the insurance fund holds 21,000 Bitcoin, worth approximately 0.1% of the total Bitcoin supply, BitMEX still doesn’t offer the same level of guarantees to winning traders that are provided by more traditional leveraged trading platforms.
Given the inherent volatility of the cryptocurrency market, there remains some possibility that the fund gets drained down to zero despite its current size. This may result in more successful traders lacking confidence in the platform and choosing to limit their exposure in the event of BitMEX being unable to compensate winning traders.

How suitable is BitMEX for Beginners?

BitMEX generates high Bitcoin trading levels, and also attracts good levels of volume across other crypto-to-crypto transfers. This helps to maintain a buzz around the exchange, and BitMEX also employs relatively low trading fees, and is available round the world (except to US inhabitants).
This helps to attract the attention of people new to the process of trading on leverage and when getting started on the platform there are 5 main navigation Tabs to get used to:
  • **Trade:**The trading dashboard of BitMEX. This tab allows you to select your preferred trading instrument, and choose leverage, as well as place and cancel orders. You can also see your position information and view key information in the contract details.
  • **Account:**Here, all your account information is displayed including available Bitcoin margin balances, deposits and withdrawals, and trade history.
  • **Contracts:**This tab covers further instrument information including funding history, contract sizes; leverage offered expiry, underlying reference Price Index data, and other key features.
  • **References:**This resource centre allows you to learn about futures, perpetual contracts, position marking, and liquidation.
  • **API:**From here you can set up an API connection with BitMEX, and utilize the REST API and WebSocket API.
BitMEX also employs 24/7 customer support and the team can also be contacted on their Twitter and Reddit accounts.
In addition, BitMEX provides a variety of educational resources including an FAQ section, Futures guides, Perpetual Contracts guides, and further resources in the “References” account tab.
For users looking for more in depth analysis, the BitMEX blog produces high level descriptions of a number of subjects and has garnered a good reputation among the cryptocurrency community.
Most importantly, the exchange also maintains a testnet platform, built on top of testnet Bitcoin, which allows anyone to try out programs and strategies before moving on to the live exchange.
This is crucial as despite the wealth of resources available, BitMEX is not really suitable for beginners, and margin trading, futures contracts and swaps are best left to experienced, professional or institutional traders.
Margin trading and choosing to engage in leveraged activity are risky processes and even more advanced traders can describe the process as a high risk and high reward “game”. New entrants to the sector should spend a considerable amount of time learning about margin trading and testing out strategies before considering whether to open a live account.

Is BitMEX Safe?

BitMEX is widely considered to have strong levels of security. The platform uses multi-signature deposits and withdrawal schemes which can only be used by BitMEX partners. BitMEX also utilises Amazon Web Services to protect the servers with text messages and two-factor authentication, as well as hardware tokens.
BitMEX also has a system for risk checks, which requires that the sum of all account holdings on the website must be zero. If it’s not, all trading is immediately halted. As noted previously, withdrawals are all individually hand-checked by employees, and private keys are never stored in the cloud. Deposit addresses are externally verified to make sure that they contain matching keys. If they do not, there is an immediate system shutdown.
https://preview.redd.it/t04qs3484cc41.jpg?width=808&format=pjpg&auto=webp&s=a3b106cbc9116713dcdd5e908c00b555fd704ee6
In addition, the BitMEX trading platform is written in kdb+, a database and toolset popular amongst major banks in high frequency trading applications. The BitMEX engine appears to be faster and more reliable than some of its competitors, such as Poloniex and Bittrex.
They have email notifications, and PGP encryption is used for all communication.
The exchange hasn’t been hacked in the past.

How Secure is the platform?

As previously mentioned, BitMEX is considered to be a safe exchange and incorporates a number of security protocols that are becoming standard among the sector’s leading exchanges. In addition to making use of Amazon Web Services’ cloud security, all the exchange’s systems can only be accessed after passing through multiple forms of authentication, and individual systems are only able to communicate with each other across approved and monitored channels.
Communication is also further secured as the exchange provides optional PGP encryption for all automated emails, and users can insert their PGP public key into the form inside their accounts.
Once set up, BitMEX will encrypt and sign all the automated emails sent by you or to your account by the [[email protected]](mailto:[email protected]) email address. Users can also initiate secure conversations with the support team by using the email address and public key on the Technical Contact, and the team have made their automated system’s PGP key available for verification in their Security Section.
The platform’s trading engine is written in kdb+, a database and toolset used by leading financial institutions in high-frequency trading applications, and the speed and reliability of the engine is also used to perform a full risk check after every order placement, trade, settlement, deposit, and withdrawal.
All accounts in the system must consistently sum to zero, and if this does not happen then trading on the platform is immediately halted for all users.
With regards to wallet security, BitMEX makes use of a multisignature deposit and withdrawal scheme, and all exchange addresses are multisignature by default with all storage being kept offline. Private keys are not stored on any cloud servers and deep cold storage is used for the majority of funds.
Furthermore, all deposit addresses sent by the BitMEX system are verified by an external service that works to ensure that they contain the keys controlled by the founders, and in the event that the public keys differ, the system is immediately shut down and trading halted. The exchange’s security practices also see that every withdrawal is audited by hand by a minimum of two employees before being sent out.

BitMEX Customer Support

The trading platform has a 24/7 support on multiple channels, including email, ticket systems and social media. The typical response time from the customer support team is about one hour, and feedback on the customer support generally suggest that the customer service responses are helpful and are not restricted to automated responses.
https://preview.redd.it/8k81zl0a4cc41.jpg?width=808&format=pjpg&auto=webp&s=e30e5b7ca93d2931f49e2dc84025f2fda386eab1
The BitMEX also offers a knowledge base and FAQs which, although they are not necessarily always helpful, may assist and direct users towards the necessary channels to obtain assistance.
BitMEX also offers trading guides which can be accessed here

Conclusion

There would appear to be few complaints online about BitMEX, with most issues relating to technical matters or about the complexities of using the website. Older complaints also appeared to include issues relating to low liquidity, but this no longer appears to be an issue.
BitMEX is clearly not a platform that is not intended for the amateur investor. The interface is complex and therefore it can be very difficult for users to get used to the platform and to even navigate the website.
However, the platform does provide a wide range of tools and once users have experience of the platform they will appreciate the wide range of information that the platform provides.
Visit BitMEX
submitted by bitmex_register to u/bitmex_register [link] [comments]

iq option best non repaint indicator  95% winning signal ... binary options strategy 5 minutes 15 min no loss - binary options strategy 5 minutes15 min no loss Impossible To Loss// Best Non Repaint Binary Indicator ... GOLD INDICATOR 2.0 for BINARY OPTIONS - 5 ITM X 0 OTM - NO LOSS No loss binary options strategy, trading system indicators ... Non Repaint 🔥 Binary Option Trading 🔥 Loss Recover ... IQ OPTION 95% winning MT4 indicator 2019 best for binary ...

Disclaimer: 7 Binary Options will not be held liable for any loss or damage resulting from reliance on the No Loss Binary Option Indicator Free Download information contained within this website. The data contained in this website is not necessarily No Loss Binary Option Indicator Free Download real-time nor accurate, and analyses are the opinions of the author. Binary Options Arrow Indicator (90% win ratio) - posted in General Area: Hi guys, I have found a good arrow indicator that gives 90% win ratio and it does not repaint. This can be a very good indicator for binary options. I have tried this indicator manually and it gave me huge favorable result. My only concern now is I have tried to automate my trade with mt2iq auto trade software but signal ... Signal services are different to binary options brokers, they work using software that sweeps the activity charts of various assets. It then picks up any emerging or developing trends and delivers the information back to you so that you can decide what to do next (hence the name "signals"). You then place a trade at your options broker. We take a look at what changes the software might pick up ... JTFX Premium - Ultimate Binary Options Indicator. The JTFX Premium software uses multiple indicators and advanced filters that analyze the markets and pick out high probability trading opportunities. We use dual-filters to avoid bad trades and ensure that our strategy is sound. To be more specific, our goal is to determine trend direction and ... Download a huge collection of Binary options strategies, trading systems and Binary Options indicators 100% Free. Get your download link now. Binary Options Indicator! (83% Win-Rate) Scroll Down to See Real Proof of Results! Features of the BO Indicator: Trade on the 5m, 15m, 1Hr, End of Day and End of Week Expiry Time(s) Operates on the MT4 Platform; Works Across all Major Currency Pairs (EURUSD, USDJPY, AUDUSD, GBPUSD, USDCAD and the USDCHF) 83% Average Win-Rate over 4-month Test Period; GMT filter applied to only show signals ... One Minute Profit Signal - Indicator for binary options turbo trading. 12. 14095. Nexus 6.1 - no repaint neural network binary indicator. 5. 4139. Neural Network Indicator – self-learning tool with accurate signals. 1 2 3 … 6 The next. About the category "Binary Options Indicators "Binary Options Indicators, unlike forex indicators, have their own specifics. In order to make a profit on ... No loss binary options indicator. Most effective use agents which are speedy like expert option. Keep away from news and terrible market regions. You may additionally use martingale with remaining trend indicators to increase the profits. I’ve already written complete publish on martingale strategy you can read it right here: martingale binary alternatives strategy. Watch the video beneath ... ” 3CCC” indicator – Binary Options Trade Examples “Consecutive Candle Count” and Forex Trading. You can also use the Binary signals indicator “Consecutive Candle Count” to take reversal trades. This is preferably done on higher timeframes. When a signal appears, take a reversal trade lasting the entire next candle or use your preferred takeprofit and stoploss levels. Below is an ... Our binary options indicator system offers a great edge in the ever challenging binary options trading forex market. We have a track record of positive reviews from our clients. Check our live trading results as proof. We offer a 60 seconds binary options indicators as well as 5 minutes expiry indicators for MT4 / MT5. Our binary option indicator trading software system is ready for download ...

[index] [15478] [22498] [13045] [25578] [19470] [6830] [22227] [18057] [22822] [11360]

iq option best non repaint indicator 95% winning signal ...

Best trading platform: http://bit.ly/BINOMO_TRADING_PLATFORM Click the Link and get $1000 on demo account for free Use the promo code: PWT777 For +100% on fi... Best trading platform: http://bit.ly/BINOMO_TRADING_PLATFORM Click the Link and get $1000 on demo account for free Use the promo code: PWT777 For +100% on fi... DOWNLOAD THIS TRADING SYSTEM, LINK https://vk.cc/9WPUHy#21 GET FOREX STRATEGY AND TRADE PROFITABLY No loss binary options strategy, trading system indicators... binary options strategy 5 minutes 15 min no loss - binary options trading strategy - non repaint indicator 2016 trading binary options strategies and tactics make money with 60 second binary ... Trade With Reliable Binary Options Broker with a ★Profit of up to 100%★ http://bit.ly/2sohvSu Start Trading With Free Signals Right Now http://bit.ly/2S... Best trading platform: http://bit.ly/BINOMO_TRADING_PLATFORM Click the Link and get $1000 on demo account for free Use the promo code: PWT777 Indicator downl... PRESENT YOU THE NEW UPDATE OF MY GOLD INDICATOR.. WITH ALL ISSUES FIX AND MORE PROFITABLE EVER!! MY CONTACT WPP +1 202 996 4205 -THE ONLY AND OWN INDICATOR VERSION Do not hesitate, the first 3 ...

http://binaryoptiontrade.ladasinuzz.ml